LAPORAN PRAKTIKUM MEKANIKA FLUIDA DAN HIDROLIKA

Disusun Oleh

INDAH ANITA SARI

16 811 0033

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MEDAN AREA T.A 2019/2020

LEMBAR PENGESAHAN

LAPORAN PRAKTIKUM HIDROLIKA

Diajukan untuk memenuhi tugas-tugas dan syarat-syarat untuk memperoleh gelar Sarjana pada Fakultas Teknik Progrm Studi Teknik Sipil Universitas Medan Area

> DISUSUN OLEH : INDAH ANITA SARI

DIKETAHUI OLEH : DOSEN PRAKTIKUM PRAKTIKUM

Ir. AMRINSYAH, MM.

FAKULTAS TEKNIK
PROGRAM STUDI TEKNIK SIPIL
UNIVERSITAS MEDAN AREA
T.A 2019

DAFTAR ISI

KATA PENGANTAR	****
DAFTAR ISI	ii
BAB I PERCOBAAN HYDROSTATIC PRESSURE	1
1.1 TUJUAN	1
1.2 ALAT	
1.3 PELAKSAAN	
1.4 DATA PERCOBAAN	the second of the second of the second second
1.5 ANALISIS DATA	
1.6 KESIMPULAN	6
BAB II PERCOBAAN METACENTRIC HEIGHT	8
2.1 TUJUAN	7
2.2 ALAT	7
2.3 TEORI	7
2.4 PELAKSANAAN	11
2.5 DATA PERCOBAAN	13
2.6 KESIMPULAN	14
BAB III PERCOBAAN OSBORNE REYNOLD'S	15
3.1 PENDAHULUAN	15
3.2 TUJUAN	16
3.3 ALAT	16
3.4 PELAKSAAN	17
3.5 HASIL PERCOBAAN	18
3.6 PERHITUNGAN	19
3.7 KESIMPI II AN	24

GHT PRESSURE GAUGE CALIBRATOR -	BAB IV PERCOB
25	4.1 TUJUA
25	4.2 ALAT-
19	4.3 PELAK
26	4.4 LAPOF
27	4.5 HASIL
F JET28	BAB V PERCOBA
28	5.1 PENDA
28	5.2 TUJUA
AN28	5.3 PROSE
29	5.4 HASIL
29	5.5 KESIM

KATA PENGANTAR

Puji dan Syukur kita panjatkan kehadirat Tuhan, yang telah melimpahkan rahmat dan kasihnya kepada kita semua, sehingga kita dapat menyelesaikan Praktikum Hidrolika, yang dilaksanakan di Laboratorium Universitas Medan Area.

Dimana praktikum ini adalah suatu silabus mata kuliah yang harus dilaksanakan oleh mahasiswa/i Teknik Sipil dan sebagai salah satu syarat memperoleh gelar Sarjana Program Studi teknik Sipil fakultas Teknik Universitas Medan Area. Hasil akhir praktikum ini dilampirkan pada sebuah laporan yang wajib dilaksanakan untuk peserta praktikum.

Dalam laporan praktikum ini, saya menyadari masih banyak kekurangan baik dalam penulisan maupun dalam susunan kalimat yang mana saya mengharapkan kritik dan saran dari berbagai pihak demi kesempurnaan laporan ini.

Dalam kesempatan yang berbahagia ini, dengan segenap hati saya mengucapkan terima kasih yang sebesar-besarnya kepada berbagai pihak yang telah banyak memberikan masukan kepada saya di dalam penyusunan laporan ni, terutama:

- 1. Bapak Ir. Amrinsyah, MM., selaku dosen pengampu pada praktikum hidrolika.
- 2. Seluruh staff Pengajar dan Birokrasi Fakultas Teknik Universitas Medan Are
- 3. Rekan-rekan seperjuangan yang telah bekerja sama semaksimal mungkin sehingga kita dapat menyelesaikan laporan ini.

Saya harap semoga laporan ini dapat bermanfaat bagi saya dan para pembaca, dan pada Tuhan kami serahkan segalanya demi tercapainya keberhasilan.

Medan, Juli 2019 Penyusun,

Indah Anita Sari

BAB I

PERCOBAAN HYDROSTATIC PRESSURE

(Tekanan Hidrostatis)

I.1 Pendahuluan

Tekanan hidrostatis adalah tekanan yang diakibatkan oleh zat cair yang diam pada suatu kedalaman tertentu. Besarnya tekanan hidrostatis tergantung dari ketinggian zat cair, massa jenis zat cair, dan percepatan gravitasi bumi. Tekanan hidrostatis disebabkan oleh berat zat cair. Besar tekanan hidrostatis bergantung pada:

- a. Massa jenis zat cair
- b. Percapatan gravitasi
- c. Kedalaman zat cair

I.2 Tujuan Percobaan

Adapun tujuan percobaan adalah untuk menentukan pusat tekanan pada bidang permukaan yang terendam sebagian.

I.3 Peralatan Pengujian

Peralatan yang digunakan dalam pengujian tekanan hidrostatis adalah sebagai berikut:

UNIVERSITAS MEDAN AREA

- 1. Hydraulics Bench
- 2. Hydrostatics Pressure Apparatus
- 3. Pemberat

I.4 Prosedur Pengujian

- 1. Menyiapkan peralatan yang akan digunakan dengan perangkat pembantu
- 2. Mengukur kedalaman, lebar pada permukaan bagian belakang quadrant
- 3. Tempatkan timbangan pada ujung kerjanya dan disetimbangkan
- 4. Menghubungkan pipa pembuang tangki ke tangki pengukuran
- Kedudukan horizontal tangki harus rata dengan menggunakan kakinya dan memeriksa dengan memakai "spirit level"
- Kedudukan timbangan harus seimbang dengan cara menggeser kedudukan pemberatnya ke kanan atau ke kiri
- Kran pengering ditutup kemudan didalamnya di isi air sampai mencapai sisi terbawah quadrant
- Sebuah anak timbangan diletakkan pada piringnya dan menambahkan air sedikit demi sedikit sampai kedudukan lengan timbangan menjadi horizontal
- Lalu mencatat posisi permukaan air pada quadrant dan berat anak timbangan pada piringnya
- 10. Akurasi sisi permukaan air dapat dilakukan dengan mengisi air kedalam tangki melebihi banyak yang diperlukan kemudian perlahan-lahan membuangnya sampai pada batas yang diinginkan

- 11. Langkah-langkah diatas dapat diulangi dengan setiap pengisian anak timbangan sampai permukaan air mendapat pada sisi ata dari bagian ujungpermukaan air mendapat pada sisi atas dari bagian ujung permukaan quadrant
- 12. Selanjutnya pindahkan setiap anak timbangan satu persatu dan catat beratnya serta ukur tinggi permukaan air yang dihasilkannya sampai keseluruhannya anak timbangan telah dipindahkan

I.5 Data Hasil Percobaan

Pengisian Tangki		Pengosongan Tangki Tangki		Rata-rata		y²	m/y²
Beban (m)	Tinggi muka air (mm)	Beban (m)	Tinggi muka air (mm)	m	У		
100	50	300	110	200	80	6400	0,031
150	69	200	85	175	77	5929	0,029
200	85	150	69	175	77	5929	0,029

I.6 Analisa Data

a. Berat rata-rata beban

Untuk berat rata-rata beban yang digunakan pada percobaan yang dilakukan yaitu:

$$\mathbf{m} = \frac{m + m'}{2}$$

Dimana: m = Bebang pengisi tangki, m' = Beban pengosongan tangka

Yang mana untuk berat m dan m' pada setiap percobaan dapat dilihat pada data hasil percobaan, sehingga berat rata-rata percobaan yaitu:

Percobaan I:

$$\mathbf{m} = \frac{m+m'}{2}$$

$$_{\text{m}} = \frac{100 + 300}{2} = 200$$

Percobaan II:

$$\mathbf{m} = \frac{m+m'}{2}$$

$$_{\rm m} = \frac{150 + 200}{2} = 175$$

Percobaan III:

$$\mathbf{m} = \frac{m+m'}{2}$$

$$_{m} = \frac{200+150}{2} = 175$$

b. Tinggi permukaan air rata-rata (y)

Untuk tinggi permukaan air rata-rata setiap percobaan:

$$y = \frac{y+y'}{2}$$

Dimana: y = Tinggi permukaan air pengisian tangka

y' = Tinggi permukaan air pengosongan tangka

Yang mana harga y dan y' dapat dilihat dari data hasil percobaan, yaitu:

Percobaan I:

$$y = \frac{y+y'}{2}$$

$$y = \frac{50+110}{2} = 80$$

Percobaan II:

$$y = \frac{y+y'}{2}$$

$$y = \frac{69 + 85}{2} = 77$$

Percobaan III:

$$y = \frac{y+y'}{2}$$

$$y = \frac{69+85}{2} = 77$$

c. Harga untuk y ² yaitu :

Percobaan I

$$y^2 = 80 \times 80 = 6400 \text{ mm}^2$$

Percobaan II

$$y^2 = 77 \times 77 = 5929 \text{ mm}^2$$

Percobaan III

$$y^2 = 77 \times 77 = 5929 \text{ mm}^2$$

d. Nilai untuk m/y² pada percobaan yaitu :

Percobaan I

$$m/y^2 = 200/6400 = 0.031 \text{ gr/mm}^2$$

Percobaan II

$$m/y^2 = 175/5929 = 0,029 \text{ gr/mm}^2$$

Percobaan III

$$m/y^2 = 175/5929 = 0,029 \text{ gr/mm}^2$$

I.7 Kesimpulan

Maka pusat tekanan pada bidang permukaan yang terendam sebagian yaitu:

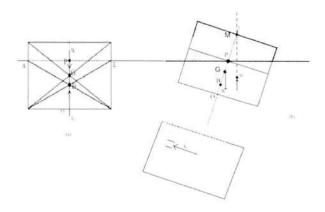
Beban 100, 150, 200 dengan tinggi muka air 50, 69, 85 dan beban 300, 200, 150 dengan tinggi muka air 110, 85, 69.

BABII

PERCOBAAN METACENTRIC HEIGHT

(TINGGI METACENTRUM)

II.1 Tujuan Percobaan


Tujuan percobaan ini adalah mengamati kestabilan benda yang mengapung dan menentukan tinggi metasentrum.

II.2 Alat Yang Digunakan

- 1. Meja Hidrolik (f1-10)
- Alat percobaan tinggi metacentrum (f1-14)
 (Metacentric height apparatus)
- 3. Pisau
- 4. Dawai
- 5. Beban
- 6. Timbangan
- 7. Penggaris
- 8. Bak Air

II.3 Teori

Suatu benda terapung dalam keseimbangan stabil apabila pusat beratnya berada di bawah pusat apung. Namun benda terapung dapat pula dalam keseimbangan stabil meskipun pusat beratnya berada di atas pusat apung.

Gambar. menunjukkan tampak lintang suatu benda yang terapung diatas permukaan air. Pusat apung B adalah sama dengan pusat berat bagian benda yang berada di bawah permukaan zat cair, seperti yang ditunjukkan dalam Gambar 2.1 (a). Pusat apung B tersebut berada vertical di bawah pusat berat G. Bidang AE adalah perpotongan permukaan zat cair dan benda. Perpotongan antara sumbu yang melewati titik B dan G dengan bidang permukaan zat cair dan dasar benda adalah titik P dan O (Gambar 2.1(a)).

Apabila benda digoyang (posisi miring) terhadap sumbu melalui P dari kedudukan seinbang, titik B akan berpindah pada posisi baru B', seperti yang ditunjukkan dalam Gambar 2.1 (b). Sudut kemiringan benda terhadap bidang permukaan zat cair adalah α . Perpindahan pusat apung B ke B' terjadi karena volume zat cair yang dipindahkan mempunyai bentuk yang berbeda pada waktu posisi benda miring. Dalam Gambar 2.1 (b), titik metacentrum M adalah titik potong antara garis vertikal melalui B' dan perpanjangan garis BG. Titik ini digunakan sebagai dasar di dalam menentukan stabilitas benda terapung. Apabla titik M berada di atas G, gaya apung F_B dan gayaberat W, akan menimbulkan momen yang berusaha mengembalikan benda pada kedudukan semula, maka kondisi itu disebut stabil. Sebaliknya apabila titik M berada di bawah G, momen

yang ditimbulkan F_B dan W akan menggulingkan benda sehingga benda tersebut dalam keadaan labil. Sedang jika M berimpit dengan G maka benda dalam keseimbangan netral. Dengan demikian jarak MG dapat digunakan untuk mengetahui kondisi stabilitas. Apabila MG Positif (M di atas G) maka benda akan stabil. Semakin besar nilai MG, semakin besar pula nilai kestabilan benda terapung. Sebaliknya jika MG negatif (M dibawah G) maka benda adalah tidak stabil (atau disebut labil). Jarak MG disebut dengan tinggi metasentrum.

Pada Gambar 2.1 (b), setelah benda digoyang, di sebelah kanan sumbu simetris terjadi penambahan gaya apung sebesar dF_B dan di sebelah kiri terjadi pengurangan sebesar dF_B . Pada keadaan tersebut berlaku bahwa besar momen terhadap B sesudah benda digoyang adalah sama dengan besar momen terhadap B sebelum digoyang ditambah momen kopel akibat perubahan bentuk benda yang terendam dalam zat cair. Apabila di tinjau suatu elemen dengan luas tampang dA dan terletak pada jarak dari sumbu simetris, maka:

Momen di B sesudah digoyang = Momen di B sebelum digoyang + Momen kopel

$$V_{zc}$$
. γ_{zc} . $BM \sin \alpha = 0 + \int \gamma_{zc} x \cdot \tan \alpha \cdot dA \cdot 2 \cdot x \cdot \cos \alpha$ (2.1)

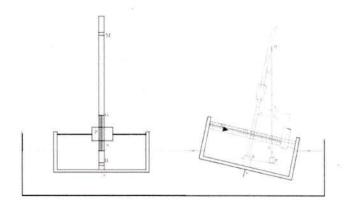
$$V_{zc}$$
• $BM = 2 \int_0^{\left(\frac{1}{2}\right)A} x^2 . dA$

$$= 2.(1/2).I_0$$

$$BM = \frac{I_0}{V_{zc}} \tag{2.2}$$

Momen inersia penampang benda yang diiris permukaan zat cair diambil yang minimum. Tinggi Metacentrum dinyatakan dengan (MG).

$$MG = MB \pm BG$$


$$MG = \frac{I_{0min}}{V_{zc}} \pm BG$$

(2.3)

Keterangan: + jika G di bawah B

- jika G di atas B

Selanjutnya dasar teori pada percobaan tinggi metasentrum dengan menggunakan alat *Metacentric height apparatus*, adalah sebagai berikut :Untuk keseimbangan statis benda apung, total berat W (yang bekerja melalui titik berat G) harus sepadan dengan gaya apung. Untuk keseimbangan stabil, M harus terletak di atas G.

Ponton sampai kondisi mengapung

Ketika beban bergerak dipindah kesatu sisi, titik berat, G, bergeser ke suatu posisi baru, G', dan pusat daya apung, B, juga bergeser kesuatu posisi baru, B'.

Sejak titik pusat gaya berat digeser, yang disebabkan oleh bergeraknya beban P melalui suatu jarak x, dapat ditulis:

$$Px = W(GG') \tag{2.4}$$

dari gambar 2 diatas, dapat dilihat bahwa:

$$GG' = MGtan\theta$$
 (2.5)

Karenanya

$$MG = \frac{Px}{W} \cot ag{2.6}$$

Catatan bahwa persamaan ini tidak bias digunakan ketika $\theta = 0$

II.4 Jalannya Percobaan

- Timbang beban bergerak (=P, Newton), yang digunakan sepanjang lebar ponton. Pasangkan benda apung (ponton), tiang vertikal dan massa keduaduanya dan menentukan total berat/beban (W).
- 2. Pada saat mulai eksperimen, posisikan beban bergerak vertikal ditengah tiang vertikal untuk menempatkan titik berat (G) sampai nantinya pada puncak tiang benda apung. Posisi G dapat ditentukan dengan menggunakan mata pisau ikatkan dawai dengan erat di sekitar tiang kapal dan secara hati-hati biarkan keseluruhan perakitan untuk seperti itu. Sesuaikan posisi menunjukkan sampai arah tiang kapal menjadi horizontal
- 3. Ukur jarak G dari dasar pontoon dan catat jarak ini, Y.
- Isi tangki volumeter meja hidrolik dengan air, kemudian pindahkan pengisian ke tabung cadangan dari tangki (untuk mencegah tumpahan ke tangki yang utama).

- Apungkan ponton di dalam tangki dan ukur kedalaman yang terbenam, untuk dibandingkan dengan nilai yang dihitung (secara teori).
- 6. Pindahkan beban bergerak ke posisi tengah benda apung. Kemudian lakukan penyesuaian kemiringan tiang vertical yang terpasang (dengan mengendurkan sekrup pengaman) untuk member nilai $\theta = 0$
- 7. Pindahkan beban bergerak horizontal kesebelah kanan kenaikan setiap jarak 10 mm dan catat jarak dan besar sudut yang terjadi (0) terhadap tali bandul untuk masing-masing posisi.
- 8. Ulangi prosedur melintasi massa di sebelah kiri pusat.
- 9. Ubah posisi titik berat benda apung dengan menaikkan benda bergerak yang berada di tiang vertikal. Posisi yang disarankan adalah pada tinggi maksimum dan kemudian ditempatkan di tengah digunakan pada percobaan pertama. Untuk masing-masing posisi yang baru G, Ulangi kembali percobaan diatas untuk menguji dan menentukan tinggi metasentrum MG. Karenanya, penempatan posisi metasentrum M (= Y + MG) dari dasar ponton, gunkan hasil dari tiga percobaan tersebut di atas.
 - Persamaan untuk perhitungan MG tidak bisa diterapkan ketika $\theta=0$, maka harus ditentukan dengan grafik sebagai diuraikan dibawah.
- 10. Rencanakan sebuah grafik tentang tinggi metasentrum MG terhadap sudut kemiringan θ. Dari grafik ini, dapat ditentukan kemungkinan posisi MG ketika θ = 0. (Dan hasil MG ketika θ = 0 inilah yang disebut MG percobaan).

II.5 Hasil Percoobaan

Percobaan I: KM = 300 mm, 30 cm

Jarak massa	Sudut	Jarak massa	Sudut
pengatur arah ke kanan (mm)	kemiringan pada ponton	pengatur arah ke kiri (mm)	kemiringan pada ponton
20	3°	20	3°

Percobaan II: KM = 350 mm, 35 cm

Jarak massa	Sudut	Jarak massa	Sudut
pengatur	kemiringan pada	pengatur arah	kemiringan pada
arah ke	ponton	ke kiri (mm)	ponton
kanan (mm)			
30	6°	30	7°

Percobaan III: KM = 250 mm, 25 cm

Jarak massa	Sudut	Jarak massa	Sudut
pengatur arah ke kanan (mm)	kemiringan pada ponton	pengatur arah ke kiri (mm)	kemiringan pada ponton
40	4,5°	40	3°

II. 6 Kesimpulan

Dari hasil pengamatan, jika Kmnya lebar maka kemiringan pada ponton juga akan besar. Faktor yang mempengaruhi selisih tinggi metasentrum percobaan dengan tinggi metasentrum teoritis adalah kesalahan dalam pembacaan kedalaman air, kesalahan dalam pembacaan sudut, dan kesalahan dalam penentuan titik berat.

BAB III

PERCOBAAN OSBORNE REYNOLD'S

(Alat Percobaan Osborne Reynold's)

III.1 Pendahuluan

Pesawat Osborne Reynold digunakan untuk mengamati aliran fluida pada pengaliran dalam pipa/aliran tertekan sifat aliran fluida dalam pipa dapat dibedakan menjadi:

1. Aliran Laminer

Adalah aliran fluida yang bergerak dalam lapisan-lapisan atau lamina lamina dengan suatu lapisan meluncur secara lancer pada lapisan yang bersebelahan dengan saling tukar momentum secara moleculer saja.

2. Aliran Transisi

Adalah aliran peralihan dari laminar menjadi turbulen atau dari turbulen menjadi laminar

3. Aliran Turbulen

Adalah aliran yang bergerak dengan gerakan partikel-partikel fluida yang sangat tidak menentu dengan saling tukar momentum dalam arah melintang yang dahsyat.

Pada dasarnya jenis aliran yang terjadi pada percobaan Osborbne Reynolds dipengaruhi oleh kecepatan aliran air terhadap waktu dan volume dimana akan di dapatkan bilangan Reynolds. Bilangan Reynolds mengambil nama dari penelitinya. Prof. Osborne Reynolds (Inggris, 1812-1912) adalah suatu bilangan yang dipakai untuk menentukan jenis aliran laminar, transisi, atau turbulen.

Pada percobaan ini aliran yang diamati terdiri atas dua komponen yaitu air dan tinta hita. Sifat-sifat aliran akan diamati secara visual untuk kemudian diselidiki besaran-besaran yang berhubungan. Dari percobaan ini diharapakan dengan melihat indikasi dngan melihat zat pewarna tinta koita bias melihat model aliranyang disebabkan oleh besarnya pengaruh arus terhadap keadaan zat tersebut. Pada dasarnya peristiwa yang teramati dalam percobaan ini adalah merupakan efek dari besar arus dalam debit tertentu dan waktu tertentu.

II.2 Maksud dan Tujuan Percobaan

Maksud dan tujuan percobaan ini adalah:

- 1. Menentukan bilangan Reynold berdasarkan debit yang mengalir
- 2. Menentukan jenis aliran dengan mempergunakan bilangan Reynold
- 3. Mengamati hubungan antara bilangan Reynold dengan jenis aliran
- 4. Mengamati profil parabolic dari aliran laminar

III.3 Alat dan Bahan

Alat dan bahan yang digunakan adalah:

- a. Pesawat Osborne Reynolds
- b. Stop watch
- c. Gelas ukur

- d. Thermometer
- e. Zat warna (tinta) dan air
- f. Mesin pompa penyuplai air

III.4 Prosedur Percobaan

Berikut prosedur percobaan Osborne Reynolds:

- a. Alat distabilkan, lalu perhatikan nivo (oleh instruktur).
- b. Pastikan saluran-saluran pemasukan air dan pelimpah terpasang.
- Reservoir tinta diisi zat warna dan turunkan injector hingga ujungnya mencapai mulut inlet bagian atas.
- d. Hidupkan / alirkan suplai air.
- e. Pastikan tinggi air yang konstan dengan terbuangnya aliran yang berlebihan pada saluran pelimpah.
- Biarkan kondisi demikian hingga 5 menit, lalu ukur suhu airnya dengan thermometer.
- g. Bukalah katup pengontrol aliran sedikit demi sedikit dan atur katup jarum pengontrol zat warna sampai tercapai aliran laminar dengan zat warna terlihat jelas.
- h. Tentukan besar debit yang lewat dengan menampung air yang lewat pipa pembuang selama selang waktu tertentu kedalam gelas ukur.
- Ulangi prosedur diatas untuk debit (Q) yang berubah-ubah dari kecil (keadaan laminar) ke besar hingga tercapai aliran kritis dan turbulen.

- j. Kerjakan kebalikan dari proses di atas untuk debit yang berubah-ubah dari besar ke kecil hingga tercapai kembali kondisi transisi dan laminar.
- k. Untuk mengetahui profil kecepatan, turunkan injector zat warna kedalam mulut inlet, dan dalam keadaan tidak ada aliran bukalah katup pengontrol aliran dan amati tetesan zat warna tersebut.
- l. Pada setiap akhir percobaantemperatur diukur kembali.
- m. Gambarkan grafik hubungan antara kecepatan aliran (V) dan bilangan Reynold.

III.5 Tabel 1 Hasil Percobaan

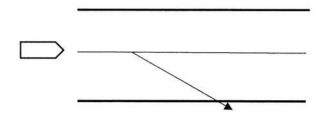
Berdasarkan hasil percobaan yang dilakukan didapat:

No	Jenis Aliran Volume (ml) Waktu ((detik)	T rata-rata (detik)	
			t1	t2	
1	Laminer	85	5,49	5,40	5,445
2	Transisi	375	5,67	5,77	5,72
3	Turbulen	602	5,94	5,45	5,695
4	Transisi	125	5,44	5,93	5,685
5	Laminer	65	5,40	5,76	5,38

III.6 Perhitungan

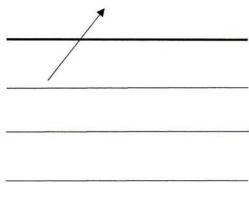
Dasar teori

Pesawat Osbone Reynold digunakan untuk mengamati aliran fluida pada


pengaliran dalam pipa/aliran tertekan, sifat aliran fluida di dalam pipa dapat

dibedakan menjadi:

1. Aliran Laminer, yaitu kondisi aliran dengan garis-garis aliran mengikuti


jalur yang sejajar sehingga tidak terjadi pencampuran antar bidang-bidang

geser fluida.

Zat Pewarna (tinta)

Lintasan Gerak Partikel

Gambar: Aliran Laminer

2.	Aliran Turbulen, yaitu kondisi aliran dengan garis-garis aliran yang
	saling bersilangan sehingga terjadi percampuran antara bidang-bidang
	geser didalam fluida.
	(
	Zat Pewarna (tinta)
	Lintasan Gerak Partikel

Bilangan Reynol mengambil nama dari penelitian. Prof.Osbourne Reynold (inggris, 1812-1912), adalah salah satu bilangan yang dipakai untuk menentukan jenis aliran: laminar, transisi, atatu turbulen. Pada percobaan ini aliran yang diamati terdiri atas dua komponen yaitu air dan tinta hitam. Sifat-sifat aliran diatas akan diamati secara visual untuk kemudian diselidiki secara besar-

besaran yang berhubungan dengan itu. Pesawat Osbourne Reynold digunakan untuk mengamati aliran fluida pada pengaliran pipa.

Rumus-rumus yang digunakan:

- Tentukan viskositas (v) air dengan menggunakan data suhu pada tabel/grafik
- Kecepatan V = $\frac{Q}{A}$
- Angka gesekan $\lambda = \frac{\Delta T.\phi}{0.5.P.V^2}$ atau f = $\frac{T}{0.5.P.V^2}$
- Tegangan geser $\tau = \frac{f.P.V^2}{8}$
- Bilangan Reynolds Re = $\frac{V.D}{v}$

Contoh Perhitungan

- ❖ Bila Re <2000 : aliran laminar
- ❖ 2000 < Re <4000 : aliran transisi
- ❖ Re >4000 : aliran turbulen
- Diameter pipa (D) = 13 mm = 1.3 cm
- \bullet Suhu = 39 $^{\circ}$ C
- Luas penampang (A) = $\frac{1}{4 \pi D^2}$

$$= \frac{1}{4\pi.1.3^2}$$

$$=1,327$$
 cm²

Viskositas kinematic (μ) pada suhu 28° C = 0,00804 cm²/det

a. Menghitung debit (Q)

Diketahui ; volume $(V) = 85 \text{ ml} = 85 \text{ cm}^3$

Waktu rata-rata =
$$t_{rata-rata} = \frac{t_{1+t_2}}{2}$$

$$= \frac{5.49+5.40}{2}$$

$$= 5.445 \text{ det}$$

Penyelesaian :
$$Q = \frac{V}{T_{rata-rata}}$$

$$Q = \frac{85 \, cm^3}{5.445 \, det}$$

$$= 15,61 \text{ cm}^3/\text{det}$$

b. Menghitung kecepatan (v)

Diket : $Q = 15,61 \text{ cm}^3/\text{det}$

$$A=1,327 \text{ cm}^2$$

Penyelesaian:

$$V = \frac{Q}{A}$$

$$V = \frac{15,61^{cm}det}{1,327cm^2}$$

$$V = 11,76 \text{ cm/det}$$

c. Menghitung bilangan Reynold

$$Re = \frac{V.D}{}$$

$$=\frac{11,\frac{76^{cm}}{det\cdot^{1.3cm}}}{0,00804^{cm}/det}$$

Tabel 1.2 hasil perhitungan percobaan ousbourne Reynold

Berdasarkan rumus dan data-data dari percobaan ini, didapat
hasil perhitungan sebagai berikut:

lume	Waktu(det)		Rata- rata	Debit(c m³/deti k)	Kecepatan (cm/detik)	Kekekalan kinematis	Re	Jenis alira	n
	t 1	t 2						Visual	Re
	5,49	5,40	5,445	15,61	11,76	0,00804	1901,49	laminer	Laminer
	5,67	5,77	5,72	65,56	49,40	0,00804	7987,56	transisi	turbulen
2	5,94	5,45	5,695	105,79	79,72	0,00804	12890,05	turbulen	Turbulen
,	5,44	5,93	5,685	21,99	16,57	0,00804	2679,22	transisi	transisi
	5,40	5,76	5,38	12,08	9,10	0,00804	1471,39	laminer	laminer

III.7 Kesimpulan

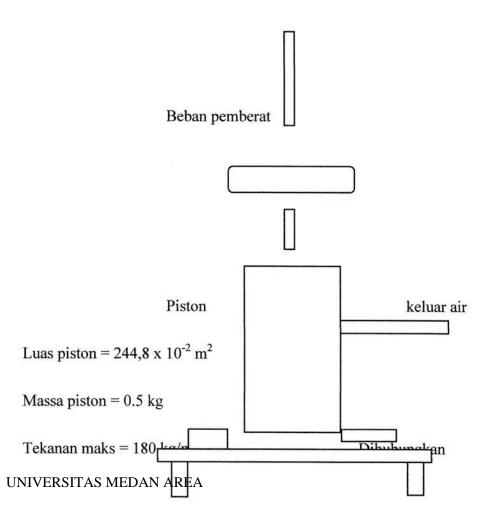
Berdasarkan data-data percobaan dan pembahasan diatas, maka dapat disimpulkan

 Besar kecilnya bilangan Reynolds dapat digunakan untuk menentukan jenisjenis aliran.

2) Jenis-jenis aliran yaitu:

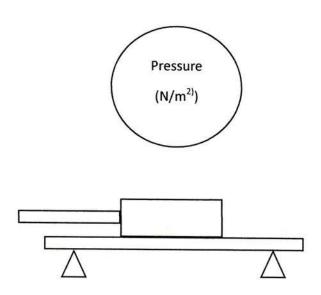
- a) Aliran laminar, yaitu kondisi aliran dengan aliran dengan garis-garis aliran mengikuti jalur yang sejajar sehingga tidak dapat terjadi pencampuran antara bidang-bidang geser fluida.
- b) Aliran tuerbulen, yaitu kondisi aliran dengan garis-garis aliran yang aling bersilangan sehingga terjadi pencampuran antara bidang-bidang geser fluida.
- c) Aliran transisi, yaitu kondisi aliran peralihan dari aliran laminar menjadi aliran turbulen, atau dari turbulen menjadi laminar.
- Semakin besar volume (v) maka nilai Re nya akan menjadi semakin besar pula untuk waktu yang sama.
- 4) Semakin besar volume (v) maka nilai debit (Q) akan semakin menjadi besar pula untuk waktu yang sama.
- 5) Semakin besar kecepatan air (v) maka semakin besar pula nilai Re-nya.

BAB IV


PERCOBAAN DEAD WEIGHT PRESSURE GAUGE CALIBRATOR

(alat pengukur kalibrasi tekanan beban mati)

IV.1 TUJUAN PERCOBAAN


Adapun tujuan percobaan ini adalah untuk mengkalibrasi pengukur tipe boudon dengan menggunakan kalibrator alat pengukur tekanan beban mati.

IV.2 PENGATURAN ALAT

Alat ukur bourdon

IV.3 PROSEDUR PERCOBAAN

Menempatkan alat pengukur tekanan diatas meja hidrolika dan hubungkan pipa masuk dengan isolasi penutup pada lubang alat pengukur. Lalu menghubungakan tabung piston dengan alat pengukur bourdon. Pada saat piston mencapai dasar tabung maka akan terjadi sedikit kehilangan air dalam tabung yang keluar dari sela-sela piston. Karenanya perlu selalu ditambahkan air.

IV. HASIL PERCOBAAN DAN PERHITUNGAN

Massa	luas		Tekanan	Tekanan	simpangan	Persentase	
piston	piston		tabung	alat ukur		Simpangan	
0,5	244,8	X	75	143 KN	68 KN/m ²	75/143	х
	10 ⁻⁶					100%=0,5244	
0,5	244,8	x	80	142 KN	62 KN/m ²	80/142	х
	10 ⁻⁶					100%=0,5633	
0,5	244,8	X	79	141 KN	62 KN/m ²	79/141	X
	10 ⁻⁶					100%=0,5602	
	Ē						

BAB V

PERCOBAAN IMPACT OF JET (DAMPAK ALIRAN JET)

V.1 PENDAHULUAN.

Impact of jet merupakan suatu program percobaan yang menyelidiki tentang pengaruh momentum tumbukan suatu fluida terhadap suatu permukaan. Fluida yang mengalir melalui nozzle akan mempunyai kecepatan yang lebih tinggi dibandingkan sebelum melalui nozlle. Perubahan kecepatan ini akan menimbulkan perubahan momentum karena kecepatan berbanding lurus terhadap momentum (P=m. v). momentum yang besar ketika menumbuk suatu bidang akan menimbulkan gaya yang besar pula. Gaya yang timbul berupa gaya tolak yang dialami bidang yang ditumbuk (dalam percobaan ini fluida menumbuk pada vane).

V.2 TUJUAN PERCOBAAN.

Tujuan percobaan adalah untuk mengetahui pengaruh bentuk permukaan vane terhadap besarnya gaya yang ditimbulkan oleh semburan air melalui nozzle.

V.3 PROSEDUR PERCOBAAN

Lakukan impact of jet diatas hydraulic bench, sambung pipa air ke supply hose, lalu pasang vane dator. Kemudian letakkan jocney weight pada posisi nol putar pengatur pegas sehingga weight beam dan seterusnya ganti vane datar dengan vane sudut 120° dalam kondisi kesetimbangan dan catat kesetimbangan dan catat lagi mass weight bean.

V.4 DATA HASIL PERCOBAAN

NO	JENS VANE	MASSA WEIGHT BENCH	DAMPAK ALIRAN ZET
1	Vane datar	300 gram	Air yang keluar dari nozel terlihat mendatar
2	Vane sudut 120°	500 gram	Air yang terlihat dari nozel terlihat cekung
3	Vane sudut 180°	700 gram	Air yang keluar dari noses sangat cekung

V.5 KESIMPULAN

Dari hasil pengamatan bahwasannya masing-masing vane datar, vane sudut 120° dan vane sudut 180° mempunyai dampak aliran jet yang berbeda-beda melalui keluaran airnya yang terlihat dari nozel.